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Abstract. Improving the efficiency of urban mobility is a crucial challenge
with regard to climate change, human health and logistics. From a technolog-
ical point of view, reinforcement learning, a branch of artificial intelligence,
is emerging as a promising computational tool for managing decision-making
processes. This chapter provides an overview of reinforcement learning
methodologies and gives proposals for further research directions by focusing
on two crucial challenges in urban mobility: traffic signal control and mobility
on demand.

Améliorer l’efficacité de la mobilité urbaine constitue un défi crucial en matière
de changement climatique, de santé humaine et de logistique. D’un point de
vue technologique, l’apprentissage par renforcement, branche de l’intelligence
artificielle, apparaît comme un outil informatique prometteur pour gérer les
processus décisionnels. Ce chapitre donne un aperçu des méthodologies
d’apprentissage par renforcement et donne des propositions d’orientations de
recherche supplémentaires en se concentrant sur deux défis cruciaux de la mo-
bilité urbaine : le contrôle des feux de circulation et la mobilité à la demande.

1 Introduction

Improving the quality of mobility of humans and goods is a critical challenge in modern
societies. As a key sector of economic activity, transport was responsible for 27% of Eu-
rope’s total greenhouse gas emission in 2017, and demand for human mobility is expected to
double by 2050 [1]. Following current trends, this increase of demand will have a negative
environmental impact through the increment of air pollution and noise, as well as a societal
impact through the increment of congestion and accidents [2]. Consequently, improving the
performance and efficiency of current mobility systems is one of the most critical challenges
of society to reduce environmental and social impacts of mobility [3, 4].

Nowadays, many cities have to deal with several daily challenges. Some emerged in the
last years or decades: the onset of the Covid-19 pandemic has led many workers to consider
working from home as a viable long-term option and prefer activity modes or private vehicles
to avoid crowing in public transport [5]. One of the realistic scenarios anticipates that mo-
bility will be considered as a service, where consumers buy a service of transportation (trips)
from their mobile device rather than the mean of transportation itself. This new mobility
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paradigm opens a large spectrum of technological challenges, such as integrating those ser-
vices in an ergonomic device and ensuring the proper coordination of several transportation
modes in an intermodal trip [6]. Novel transportation modes, such as automated vehicles,
are in an advanced stage of development, and many experiments are conducted in several
cities around the world [7]. Combined with shared and on demand vehicles, those recent
technological innovations provide promising solutions for urban mobility.

Technological innovation will be essential in tackling future challenges in this dynamic
context. Among them, Artificial Intelligence (AI) methodologies are a powerful emerging set
of tools that boast the performance of transportation systems, making them more resource-
efficient and helping in decision-making processes. AI approaches can be roughly divided
into three branches [8]: supervised learning algorithms (for map training inputs to labelled
outputs with predefined indexes), unsupervised learning algorithms (for finding applications
for classification and clustering dimensionality reduction), and Reinforcement Learning (RL)
algorithms (for controlling and decision-making processes). This last branch is considered
an active learning because it provides a framework by which an agent can learn from its en-
vironment the best action to take in a given state [9]. As we will summarise in the following,
RL is a promising research field in mobility, and it found application in many mobility issues.

Several applications of reinforcement learning can be founded in urban mobility (for in-
stance, autonomous vehicle navigation, public transportation operation optimization, fleet
management, and infrastructure planning). In the sequel, we focus on two emblematic appli-
cations: traffic signal control and mobility on demand. The chapter is organized as follows:
in section 2, we provide basic definitions of RL; in section 3, we compare the single-agent
and multi-agent approaches in traffic signal control; in section 4 we discuss the advantages
and the drawbacks of model-free approaches and the recent improvements via the deep rein-
forcement learning approach by discussing their application in mobility on demand domain;
in section 5 we discuss and conclude the chapter by giving proposals for further research
directions.

2 Reinforcement Learning Setting and Algorithms

At a given time step, an agent immersed in a computational environment is in a defined
state, observes the environment, and makes an action. The action is in accordance with the
observation. The action affects the environment and returns a reward value to the agent.
Hence, the reward is a function of the state and the action. The agent aims to maximise the
cumulative reward value by learning the optimal policy through several interactions with the
environment [9]. Therefore, solving an RL problem means finding the policy to achieve a
maximum reward in the long term.

In the mobility context, an advantage of RL approach to optimisation and heuristic meth-
ods is that it can improve the algorithm’s performance by learning via the interaction with the
environment. Improving the system with real data, RL algorithms provide a better decision-
making process. However, in several cases, those improvements have a tremendous cost
in terms of computation time and setup of parameters. Ensuring the convergence of a RL
algorithm is hence not ensured, demanding a high level of experience and solving before
deployment in the real world.

The Q-learning algorithm is a simple and popular Reinforcement Learning (RL) algo-
rithm used for solving such problems. It is based on the manual design of a state-action table,
where for each pair is computed a Q-value. This value represents the expected future reward
derived as a long-term cumulative reward for each state-action pair. By visiting each pair, the
agent explores all possible combinations and finds the best option for all initial configurations.



2.1 Reinforcement Learning: Basic Distinctions

The agent has a partial understanding of the environment. He interacts with the environment
and tries to understand how the environment is modelled. In the model-free approaches, the
agent improves its policy without knowing the environmental model. The learning is free,
meaning that the algorithm does not need to know the full functioning of the environment to
search for the optimal policy. The only requirement for the agent is the reward function. Due
to its simplicity for implementation and the generality of the approach, model-free approaches
are largely applied in mobility. As discussed in section 4, model-free provides suitable results
to solve on-demand problems and optimise vehicle-shared fleets’ location.

Another distinction is about the representation of the policy. we can distinguish between
policy-based and value-based algorithms. In the first class, we explicitly build a representa-
tion of the policy function, keeping in memory the policy during the learning. In the second
class, the function is not explicitly designed; we only store the value function. The policy can
be derived in a second time from the value function. In the first case, the algorithm estimates
how good it is for the agent to be in a state, and in the second case, the algorithm estimates
how good it is to perform an action in a given state.

The third main distinction is about the time-lap of the experiences that the agent considers
to improve its policy. Therefore, we have on-policy and off-policy algorithms. In the first
class of algorithms, the learning is online. The policy is updated with data collected at the
same learning step. In the second class of algorithms, the learning is offline. The agent’s
experience at a given step is updated in a data buffer containing previous experiences. The
policy is a function of the buffer: all this data are used to find the action for the next step.

2.2 Recent improvements

Classical RL algorithms based on Markov Decision Process (MDP) may not find the optimal
policy efficiently in high-dimensional complex systems such as transportation systems. Visi-
tation of each state-action pair can become computationally infeasible. Moreover, in several
cases, uncertainly and a continuous state-action possible configuration makes unrealistic the
definition of a discrete and deterministic state-action table. For those reasons, a representa-
tion with a Deep Neural Network (DNN) is often suitable to tackle mobility issues. In order to
tackle those limits, numerous non-linear function approximation are proposed. In this field,
Deep Reinforcement Learning (DRL), where a multi-layered structure model a continuous
state-action space, is highly suited for complex environments. Compared to the Q-learning
algorithm, where the process iterative updates each state-action value, a deep Q-learning al-
gorithm uses DNN to approximate a function that maps states to values. Methods from this
approach provide a more flexible approximation for non-linear functions. Moreover, avoiding
hard-specified state representations, those approaches did not require a manual state-action
set design. Improvements in the computational performance are discussed in section 4.

2.3 Multiple agents

Many mobility problems should be considered as the co-existence of several agents. Learning
with multiple agents is a challenging task. An agent’s environment also contains all agents
that interact at some time with him. As an agent changes its state over time, the environment
for other agents becomes dynamic. Moreover, each agent partially understands its environ-
ment since it cannot be informed of the configuration of the whole system of agents. An
increasing number of agents also imply an increased state-action set of the whole system,
driving to high-dimensionality problems. One of them is that when an agent optimises its



actions without considering other agents, the optimal learning of the system becomes non-
stationary. Several approaches have been proposed to address this problem, mainly integrat-
ing competitive and collaborative mechanisms between agents (see section 3).

3 Traffic Signal Control: Multi-Agent Applications

At the heart of any RL approach is the notion of agent, which influences the environment
and learns from its feedback. Since this notion of the agent is paramount in the context of
RL, its definition quite logically impacts the models in which they are applied. As mentioned
in section 2, defining the agent or agents is one of the leading choices to perform when
designing an RL algorithm. This draws the distinction between single-agent and multi-agent
approaches. This choice greatly impacts the quality of the solution reached by the algorithm,
the convergence speed and the results’ stationarity.

In order to illustrate this impact, we consider the Traffic Signal Control (TSC) domain,
which is an essential tool in managing modern urban mobility. The TSC aims to optimize
traffic flows over a road network, typically by minimizing travel time through traffic light
signals at the intersection level. The application of RL for TSC, a field colloquially known as
RL-TSC, appeared in the 1990s using genetic RL algorithms to route traffic [10].

At their core, RL-TSC models are fairly simple. Given the current traffic configuration
around an intersection (i.e. the environment state st), the agent chooses a traffic light config-
uration (i.e. the action at) influencing the flow of vehicles around the intersection. After this
configuration is applied at the intersection level, the resulting traffic state (i.e. the next state
st+1) and associated delay (i.e. the reward rt) are passed back to the agent so that it can learn
from its previous action. By iteratively testing multiple actions on different traffic states, the
agent is expected to learn an optimal mapping between traffic states and traffic light settings,
optimizing the traffic flows at the intersection.

3.1 Single Agent and Multi-agent Reinforcement Learning

Although straightforward in scenarios consisting of a single isolated intersection, modelling
choices expand when tackling road networks composed of multiple intersections. Indeed,
deterministic traffic management systems such as Claire-Siti or GERTRUDE optimize traf-
fic flows using a central planner controlling multiple traffic lights simultaneously. However,
this approach poorly translates to RL-TSC models since a single agent would observe the
entire state of the network at once, which would cause significant dimensionality issues for
the underlying RL algorithm. Such a limitation explains why most RL-TSC models on road
networks with multiple intersections feature multiple agents learning in parallel [11], in a
Multi-Agent Reinforcement Learning (MARL) setting.

In a MARL setting, agents usually have a limited and local view of their environment,
which can be modelled as a Partially-Observable Markovian Decision Process (POMDP).
Such models usually feature increased performance compared to centralized approaches in
various RL tasks, improved robustness and fault-tolerance, and allow experience-sharing be-
tween agents (i.e. one agent can learn from the experiences of another) [12]. However, this
standard model choice opens up the question of how multiple agents of the same network
interact.

A simple and somewhat familiar approach to MARL models is to avoid explicitly mod-
elling interactions between RL agents of the same system. On the one hand, this method
has the advantage of staying relatively simple since each agent optimizes traffic locally
without acknowledging others. Furthermore, local traffic optimization usually translates to



good global performance metrics, as shown by the excellent results obtained by independent
MARL models in the RL-TSC literature [13]. On the other hand, an inherent limitation of
independent MARL models is the non-stationarity associated with each independent learn-
ing model. Indeed, since agents do not explicitly model the behaviour of other agents, their
model of the local environment is skewed since it depends on the behaviour of other agents
that changes over time. This flaw can cause the policies of local agents to oscillate and never
reach an optimal equilibrium. A standard solution to the issue of non-stationarity in MARL
models is to include information about other agents in the state definition of a local agent.

3.2 Coordination mechanisms in Traffic Signal Control

Modern RL-TSC models further push the interactions between neighbouring intersections
and agents to maximize their optimization potential. Indeed, traffic light optimization ben-
efits from large-scale strategies such as creating green waves across the main arteries of a
road network. How do such methods model the interactions between neighbouring learning
agents?

The first approach is to consider the environment state of neighbouring agents when
choosing a local traffic light configuration. For instance, seeing that an intersection up-
stream has many vehicles heading towards the local intersection will likely influence the
local traffic light setting. Such a model, in which agents do not explicitly communicate but
observe the state of their neighbours, also known as indirect coordination, is featured in the
MARLIN-ATSC method [14]. The MARLIN method has achieved state-of-the-art results in the
early 2010s by using joint state-action optimization. Each agent observes the state of its
neighbouring agents, predicts which traffic light settings they will implement, and choose its
traffic light settings based on these predictions.

The second and more deeply integrated approach is making agents coordinate directly in-
stead of predicting their future action choices. Although more computationally and theoreti-
cally complex, these methods are currently state-of-the-art in the RL-TSC literature and offer
many possibilities. For instance, agents can automatically form green waves over arterials
through forced coordination [17]. Using emergent communication protocols is another im-
pressive and highly efficient approach for direct coordination. The DIAL model [16] defines
a coordination model in which agents can send and receive messages without defining any
common language beforehand. The language is learned through deep reinforcement learning
while solving the task concurrently. This highly innovative approach to agent coordination
has been applied to a TSC context [29] and has showcased excellent performances.

4 Mobility on Demand: Model-free Models and Deep Reinforcement
Learning

4.1 Model-free and Model-based Models

RL algorithms can be distinguished according to whether they explicitly model their envi-
ronment dynamics or not. A model of how the environment reacts to the learning agent(s)
decisions can be built, learned and used to forecast the future states and consequently choose
the action leading to the most preferred situation. From the perspective of MDP, this is equiv-
alent to knowing the transition function. Approaches that take into account a model of the
environment are called model-based approaches. Moerland et al. [18] comprehensively re-
view these approaches and successful usages in the literature. However, these approaches
are rarely used in highly complex and dynamic environments, as it becomes hard to properly



model all the system components. This is especially true for real-world environments such
as urban mobility.

In contrast to model-based approaches, model-free methods do not rely on learning the
dynamics of the environment. Only the obtained rewards are used to build a better policy
throughout interactions. A model can be built to predict the rewards associated with a state or
a station-action pair, which can be used to derive the optimal policy. The Q-learning method
mentioned in section 2 is an example of a model-free approach. Consequently, almost all
of the RL approaches that are implemented for tasks related to urban mobility fall into the
model-free category.

To illustrate this, we consider the emerging field of using RL approaches to operate
Mobility-on-Demand (MoD) systems. Jiao et al. [19] use a SARSA method to relocate empty
vehicles. Feng et al. [20] combine RL with Integer Linear Programming (ILP) to operate an
intermodal MoD system that can either bring the travellers directly to their destinations or to
public transport stations from which they can continue their trips. More precisely, RL is used
to learn the values of each vehicle’s state-action pairs of possible alternatives (assigned trips).
The values are then used to build the ILP problem that is solved to determine the trip assign-
ments. Wang et Chang [21] explore using RL to operate autonomous bus services and decide
when buses should be sent on the line. Chouaki et al. [22] present a Q-learning approach for
rebalancing empty vehicles in a MoD system to maximise the number of trips served by the
fleet.

4.2 Dealing with dimensionality: Deep Reinforcement Learning

The high complexity of mobility-related problems does not just make using a model-based
system challenging. Even with model-free approaches, the high dimensionality of state and
action spaces needs to be taken into account and appropriately addressed. This is especially
the case for the state space design and the value function. In classical tabular methods, the
state value function (resp the action-state value function, which is, for instance, used to pop-
ulate the Q-table in the Q-learning algorithm) is represented by storing its value for every
possible state (resp state-action pair). The use of tabular methods for the operation of on-
demand mobility systems has been investigated in the literature [23, 24]

Given that the size of the state space (or state action space) is exponential to the num-
ber of considered features, it rapidly becomes impossible to use tabular methods with high-
dimensional problems. For example, considering a decentralized algorithm for MoD opera-
tion with a state space that includes the position of the vehicle and the origin and destination
of each passenger leads to 1018 possible states considering 100 possible locations on the net-
work and a 4−seated vehicle. Moreover, a tabular representation updates the value of each
situation in isolation from the others and cannot generalize to similar situations. In order to
tackle these issues, various approaches for value function approximation are used in the RL
literature. The idea is to model the state value function (or the state-action value function) as
a parametric function and learn, through interaction, the correct parameter values.

A particular type of value function approximation technique, Artificial Neural Networks
(ANN), has gained significant attention in recent years due to its successful use in supervised
learning. ANNs can represent a wide range of functions, including non-linear ones. The back-
propagation algorithm allows them to adapt their parameters to better fit into the observations.

RL approaches that use a deep ANN (an ANN with many layers) are known as deep
reinforcement learning methods [9]. Given the high dimensionality of mobility-related prob-
lems, as illustrated above, many studies investigating RL use in mobility focus on deep-RL
approaches [25]. Al-Abbasi et al. [26] present a Deep-RL framework to learn the dispatch
decisions for on-demand vehicles. They combine three deep ANNs to learn travel times in



the network, predict the following traveller demands and learn the value of state-action pairs.
The ANN used for the latter purpose is known as a deep Q-network. Tang et al. [27] show
that a value function represented using a deep ANN can be used to operate an on-demand
system. Unlike previously mentioned approaches, Mao et al. [28] use a policy-based RL
approach where the policy is represented as a deep ANN.

The use of deep reinforcement learning methods is already ubiquitous in some areas of
the mobility literature. For instance, almost all novel traffic signal control methods use ANNs
to compute optimal traffic signal settings [13]. As the performance of deep reinforcement
learning continues to increase, allowing us to take more environment features into account,
the use of deep ANNs is expected to continue to increase in RL methods that address mobility
challenges.

5 Conclusion and Discussion

Artificial Intelligence (AI), and more precisely Reinforcement Learning (RL), show promis-
ing perspectives in the context of mobility. However, as this chapter shows, there are limi-
tations to the current applications of reinforcement learning in the context of mobility. In-
deed, the transportation field usually features highly non-linear and high-dimensional prob-
lems. Classical approaches based on MDPs can fall in a large and hand-specified design
of a large and discrete action-state table. The most relevant drawback of this formalism is
that it can provide a high sensitivity to learning parameters, providing some issues in find-
ing the algorithm’s convergence and demanding considerable computational time. In the
mobility-on-demand problem context, those limits impact the capacity to design all the pos-
sible state-action combinations, preventing the system from providing the well-adapted action
for a given state in an adequate time. Deep Reinforcement Learning (DRL) algorithms pro-
vide a consistent perspective, allowing to design a continuous state-action space, integrating
uncertainty and obtaining a policy in a reasonable time.

Considering the example of traffic flow control, we can see that two RL approaches are
applied: single agent and multi-agent RL. In the first approach, the transportation system is
seen as an agent which learns from the environment the optimal strategy to maximize the
reward. In the second approach, the transportation system is seen as a set of agents that
co-evolve and co-learn their strategy. Cooperation and/or competition mechanisms can be
integrated to improve the algorithm’s ability to find the optimal strategy and/or reduce the
learning time. Both approaches present advantages and drawbacks from computational and
conception points of view. Decentralized approaches are often designed with a small set
of states and actions for each agent, providing a better understanding of the policy. How-
ever, convergence is hard to find because each agent is immersed in an evolving environment
composed of agents that changes their state during the simulation. Explicit and direct coor-
dination between agents is often preferable with regard to model performance at the cost of
computational and theoretical complexity. This observation can be taken even further when
considering models featuring multiple agent types, such as hybrid models in which traffic
light controllers and vehicles are two distinct types of communicating agents. Given the in-
creased communication capabilities of many actors of modern mobility (e.g. vehicles, people
and infrastructure), such complex MARL models are likely to become commonplace in the
future.

In a model-based approach, agents often learn faster than those modelled with a model-
free approach. An agent can reuse information previously achieved. However, the inconve-
nience is that those algorithms required a greater size storage cost than the other approach.
Moreover, they are more sensible on the accuracy of the environmental model: the state-
action table should be designed with accuracy to ensure a convenient algorithm performance.



Mobility systems are often characterized by a high degree of uncertainty. Since they are
complex, unexpected and unpredictable behaviour often emerge from decentralized interac-
tions of their elements. Moreover, since a mobility system is composed mainly of humans,
individuals’ unpredictability impacts the whole behaviour system. The design of individ-
ual behaviour and their interaction is one of the most relevant challenges in transport. For
those reasons, uncertainty is crucial to understand the system well and to design strategies
to improve its performance. In some circumstances, the MDP approach shows some limits
because it assumes that the system’s next state depends only on the present state and the ac-
tion to take. Partial observable Markov Decision Process and Deep Reinforcement Learning
show promising perspectives to consider those aspects better.

Future transportation systems are expected to include more autonomy, such as decision-
making processes in traffic management, vehicle driving and vehicle co-existence. The whole
system’s performance can be improved, incrementing human quality of life and reducing
urban impacts of climate change. In order to make this scenario possible, Reinforcement
Learning will play a major role, providing a consistent technological background for decision
processes.
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